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Figare 11.1 P-x-y diagram for isopropanol water at 30°C illustrating the rationale for
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Now we can begin to see how this approach adjusts the model to the bubble pressure.When a
system has positive deviations from Raoult’s law, the bubble line lies above the Raoult’s law bub-
ble line (P = x]P';m'*' le’;al), therefore »;> | . When a system has negative deviations, »; < 1.
This correction factor y; 1s referred to as the activity coefficient. Therefore, P-x-y data are related
to the deviations of the activity coefficients from unity, or it may be helpful to consider the sign of
In y; .! Look back at Fig. 11.1 and the figures in Section 10.7 and note that the deviations from
Raoult’s law disappear as pure compositions are approached. This means that the deviations depend
on composition, and that the y(x) that we have introduced in Eqn. 11.1 must go to | as the solution
becomes pure in the #* component.
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As you might imagine, there are rules that we should follow to develop feasible functions. We
discuss those theoretical aspects in the upcoming sections. The accepted method of modeling the
system is to build a model for y{x) based in the excess Gibbs energy. The excess Gibbs energy is
also discussed in upcoming sections, but briefly it is the Gibbs energy in “excess™ of an ideal solu-
tion. It is generally positive when » > 1 and negative when » < 1. The model for excess Gibbs
energy can be developed from a theoretical model of mixing behavior, and usually contains adjust-
able parameters to adjust the magnitude and skewness of the “excess”™ and thus fit the experiment.

. Bubble, Dew, Flash
Experiment: Calculations.
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z 3 A,
to experimental y,.) e.g Xy psat = y;P
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Figure 11.2 Strategy for using excess Gibbs energy models for activity coefficients. Experiments are
used to determine ; in Stage I. A model is selected and the model is fitted in Stage II. The
model is utilized to extend and extrapolale the experimental results in Stage I11.



The One-Parameter Margules Equation
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Example 11.1 Gibbs excess energy for system 2-propanol + water

Using data from the 2-propanol(1) + water(2) system presented in Fig. 10.8 calculate the excess
Gibbs energy at x; = 0.6369 and fit the one-parameter Margules equation. Data from the original
citation provide T= 30°C, P{ = 60.7 mmHg, P; = 32.1 mmHg, and y; = 0.6462 when x, =
0.6369 at P = 66.9 mmHg.

Solution: The approach is to determine the activity coefficients and then relate them to the
excess Gibbs energy. The Stage I step is

NP 06462669

"= = 1118
x P} 0.6369 - 60.7
P .
on 2
sz; ’ '
G"
< = x;Iny; +xyIny, =0.6369 In(1.118) +0.3631 In (2.031) = 0.328 11.7

RT
If we were given more experimental data, we could repeat the calculation for each data point, thus
creating a plot of G versus x, like the points shown in Fig. 11.3.

Then, we have been instructed to use the one-parameter Margules model for Stage I1. Let us fit
the model as given by Egn. 11.5 and using the value from Eqn. 11.7.

E

G - - -
T Ajpxqx, = 0328 = A, =0.328/[(0.6369)(0.3631)] = 1.42 11.8

The curve of G versus x, is shown in Fig. 11.3 along with the two-parameter models to be dis-
cussed in Section 11.6 and Example 11.5.
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Figure 10.8. (¢), (d) Phase behavior of the 2-propanol + water system. Left figure at 30°C.
Right figure at 760 mm Hg. (T-x-y from Wilson, A., Simons, E.L., 1952. Ind. Eng. Chem.

44:2214, P-x-y from Udovenko, V.V., and Mazanko. T.F. 1967. Zh. Fiz. Khim. 41:1615.)
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Figure 11.3 Hlustration of caleulation of G* from experiment and fitting of Margules models to a single

point as discussed in Examples 11.1 and 11.5, for 2-propanol + waler, with the experimen-
tal data points from Fig. 10.8 on page 395. Data are tabulated in Example 11.8. The van
Laar model fit to a single point is explained in Section 12.2.



11.2 CALCULATIONS USING ACTIVITY
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Example 11.2 VLE predictions from the Margules equation

Use the fit of Example 11.1 to predict the P-x-y diagram for isopropanol + water at 30°C. The
data used for Fig. 9.5 from Udovenko et al. for 2-propanol(1) + water(2) at 30°C show x; =
0.1168 and y, = 0.5316 at 7= 60.3 mmlg.

Solution: This is a Stage IIT problem, since the first two stages have been completed earlier. Let

us start by generating activity coefTicients at the same composition where experimental data are
provided, x; = 0.1168; we find

Iny = Agpx3 =1.42(0.8832)"= 1.107, = 3, =3.03
Iny, = Ay, xd=1.42(0.1168)" = 0.0194 = 35 = 1.02

Note that these activity coefficients differ substantially from those calculated in Example 11.1
because the liquid composition is different. We always recalculate the activity coefTicients when
new values of liquid composition are encountered.

Substituting into modified Raoult’s law to perform a bubble-pressure calculation:

PP = (0.1168)(3.03)(60.7) = 21.48 mmIg = y, P

X3P = (0.8832)(1.02)(32.1) = 28.92 mmlig = y, P
The total pressure is found by summing the partial pressures,
P =P+ y,P =504 mmHg
We manipulate modified Raoult’s law as shown in step 3 of Fig. 11.4:

W = PP =2]1.48/504 = 0426

Therefore, compared to the experimental data, the model underestimates the pressure and the
vapor composition of y, is too low, but the use of one measurement and one parameter is a great
improvement over Raoult’s law. The estimation can be compared with the data by repeating the
bubble-pressure calculation at selected x; values across the composition range: the results are
shown in Fig. 11.5. Recall that in Fig. 11.3 we noted that the excess Gibbs energy model using
Ay = 1.42 fails to capture the skewness of the excess Gibbs energy curve. The deficiency is evi-
dent in the P-x-y diagram also. Fig. 11.5 includes a two-parameter fit that will be discussed later.
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parameters fitted in Example 11.5 compared with points calculated from the data.
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Example 11.3 Gibbs excess characterization by matching the bubble point

The 2-propanol (1) + water (2) system is known to form an azeotrope at 760 mmIlg and 80.37°C
(x; = 0.6854). Estimate the Margules parameter by fitting the bubble pressure at this composition.
Then compare your result to the Raoult’s law approximation and to the data in Fig. 10.8(c) (at
30°C), where P = 66.9 mmlg at x; = 0.6369 as used in Example 11.1.

Solation: The Antoine coeflicients for 2-propanol and water are given in Appendix E. At T=
80.37°C, P = 694.0 mmHg, and P, = 359.9 mmHg. We seek P = 760 mmHg. Let us use
trial and error at the azeotropic composition to fit 4, to match the bubble pressure.

AtAp, =1, 7= exp[1(1 — 0.6854)%] = 1.104; » = exp[1(1 — 0.3146)%] = 1.600; the bubble pres-
sure is by Egn. 11.2

P =0.6854(694.)1.104 + 0.3146(359.9)1.600 = 706.3 mmIlg
The pressure is too low. We need larger activity coeflicients, so 4;, must be increased. Typing the
bubble-pressure formula into Excel or MATLAB (see file Ex11_03.m), we can adjust 4, until
= 760 mmIIg.

at Ay, = 1.368, » = exp[1.368(1 — 0.6854)%] = 1.145; » = exp[1.368(1 — 0.3146)%] = 1.902; the
bubble pressure is

P = 0.6854(694.)1.145 + 0.3146(359.9)1.902 = 760.0 mmIg

Now, for the second part of the problem, to apply this at T = 30°C, P = 58.28 mmHg, P;" =
31.74 mmlg. When x, = 0.6369 the ideal solution gives,

P =0.6369(58.28) + 0.3631(31.74) -~ 48.64 mmIIg

Al A ;= 1.368, 3, = exp[1.368(1 — 0.6369)2] = 1.1976;
7, = exp[1.368(1 — 0.3631)%] = 1.7418; the bubble pressure is

P = 0.6369(58.28)1.1976 + 0.3631(31.74)1.7418 ~ 64.53 mmIIg

Comparing, we see that the Raoult’s Law approximation, P = 48.6 mmlig, deviates by 27%
whereas the Margules model deviates by only 3.5%. Furthermore, the Margules model indicates
an azeotrope because 64.5 > P/ > P means that there is a pressure maximum. Hence the
Margules model “predicts™ an azeotrope at this lower temperature, qualitatively consistent with
Fig. 10.8(c), whereas the ideal solution model completely misses this important behavior.
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Figure 10.8 (c), (d) Phase behavior of the 2-propanol + walter system. Lefi figure at 30°C. Right figure al
760 mm Hg. (T=x-y from Wilson, A., Simons, E.L., 1952. Ind. Eng. Chem. 44:2214, P-x-y from
Udovenko, V.V, and Mazanko. T.F. 1967. Zh. Fiz. Khim. 41:1613.)
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Figure 10.4 Data from Fig. 1.3 plotfted with coexisting liquid and vapor values for each experimental tie
line, resulting in the x-y plot. Note that the data do not superimpose exactly because one data
set is isobaric and the other set is isothermal. Squares are T-x-y data. Circles are P-x-y data.
The diagonal is traditionally drawn in an x-y figure, and the data never cross the diagonal for
systems that follow Raoult’s law.
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Preliminary Predictions Based on a Molecular Perspective

You know that acids and bases interact favorably. An obvious example would be mixing bak-
ing soda and vinegar which react. You could also mix acid into water. These interactions are “favor-
able” because they release energy, meaning they are exothermic. They release energy because their
interaction together is stronger than their self-interactions with their own species. A subtler exo-
thermic example is hydrogen bonding, familiar perhaps from discussions of DNA, where the mole-
cules do not react, but form exothermic hydrogen bonds. Unlike a covalent bond, the hydrogen sits
in a minimum energy position between the donor and acceptor sites. The proton of a hydroxyl (-
OH) group is acidic while an amide or carbonyl group acts as a base. We can extend this concept
and assign qualitative numerical values characterizing the acidity and basicity of many molecules
as suggested by Kamlet et al.” These are the acidity parameter, «, and basicity parameter, £, val-
ues listed on the back flap. For example, this simple perspective suggests that chloroform (> 0)
might make a good solvent for PMMA (a polymer with a molecular structure similar to methyl
ethyl ketone, f# = () because the « and /7 values should lead to favorable interactions. This is the

perspective suggested by Fig. 11.7(a).

Figure 11.7 Ohservations about complexation. (a) A mixture of acid with hase suggests
[favorahle interactions, as in acetone + chlomoform. (b) Hydrogen bonding
leads to unfavorable intevactions when one component associates strongly
and the other is inert, as in isooctane + water:. (¢c) Hydrogen bonding
solutions can also be ideal solutions if both components have similar acidity
and hasicity, as in methanol + ethanol.
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We can go a step further by formulating numerical predictions using what we refer to as the )

Margules

Margules acid-base (MAB) model. The model provides first-order approximations. The model 18! gsq-pase

A= (&g = @)y = )W + VAART)
where ¥; = M,_; /p;" is the liquid molar volume at 298.15K in cm’/mol. The MAB model is intro-
duced here for pedagogical purposes. MAB is a simplification of SSCED* which is in tum a simpli-
fied adaptation of MOSCED?, both of which are covered in Chapter 12. Typical values of ¥, @, and
J are presented in Table 11.1. For example, with chloroform + acetone at 60°C, this formula gives

(MAB) model.
11.9

A= (5.8 = 0)(0.12 - 11.14)(80.5 + 73.4)/[4(8.314)333] = -0.888 11.10

Table 11.1 Acidity (o) and Basicity (B) Pavameters in (Jicn')'? and

Molar Volumes (cnt'/mol) for Various Substances as liguids at 298 K*

Compound a I} |

Acctonc 0 11.14 73.4
Benzene 0.63 2.24 89.7
Chloroform 5.80 0.12 80.5
'Ethanol 12.58 1329 582
n-Hexane 0 0 130.3
Isooctanc 0 0 162.9
Isopropanol 923 11.86 76.8
Mcthanol 17.43 14.49 405
'MEK 0 9.70 90.1

Water 50.13 15.06 18.0

a4 Additonal parameters are on the back flap.
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Note how the order of subtraction results in a negative value for 4,, when one of the compo-
nents is acidic and the other is basic. If you switched the subscript assignments, then Az would be
negative and A would be positive, but 4,, would still be negative. This negative value makes the
value of y; smaller, and that is basically what happens when hydrogen bonding is favorable. Some-
thing else happens when one compound forms hydrogen bonds but the other is inert. Taking iso-
octane(1) as representative of oil (or gasoline) and mixing it with water(2) at 25°C,

App = (50.13 ~ 0)(15.06 — 0)(18.0 + 162.9)/[4(8.314)298] ~ 12.33 111

This large positive value results in 3 > 7.5 for the isooctane. We can use y;> 7.5 to suggest a
liquid phase split, as we should expect from the familiar guideline that oil and water do not mix.
Furthermore, we can quantify the solubilities of the components in each other (aka. mutual solo-
bilitics) by noting that x; = 1/, when », >100. Knowing the saturation limit of water contaminants
can be useful in environmental applications. As a final example, note that we recover an ideal solu-
tion when both components hydrogen bond similarly, as in the case of ethanol + methanol at 70°C.

A= (17.43 - 12.58)(14.49 — 13.29)(40.5 + 58.2)/[4(8.314)343] = 0.05 11.12

In this case, we see that hydrogen bonding by itself is not the cause of solution non-ideality. A mis-
maich of hydrogen bonding is required to create non-idealities.

16



Example 11.4 Predicting the Margules parameter with the MAB model

Predict the A, value of the 2-propanol (1) + water (2) system using the MAB model at 30°C.
Then compare your result to those of Examples 11.1 and 11.3.

Solation: From Eqn. 11.9, 4,5 = (50.13 — 9.23)(15.06 — 11.86)(76.8 + 18.0)/[4(8.314)303] -
1.08. This compares to the value 4,,/RT = 1.42 from Example 11.1 and 4,,/RT = 1.37 from
Example 11.3 at 30°C. The MAB model does not provide a precise prediction, but qualitatively
indicates a positive deviation of the right magnitude.

17



11.3 DERIVING MODIFIED RAOULT’'S LAW

Deviations from L —
Idcal Gas = f: < .

7

/ / Ideal
[ | I(GasModel( | Ideal_ |  Real )

' | }‘ =y,P | Solution Solution
/
3 / i# 1
Deviation \— /j_- / ]

from Ideal Solution ~————

Figure 11.8 Schematic of the relations between different fluid models. Ideal
gases arve a subset of ideal mixtures, which in turn ave a subset
of real mixtures. Departure finctions (fugacity coefficients)
characterize deviations from ideal-gas behavior, and excess
properties (activity coefficients) characterize deviations from
ideal-solution behavior:
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11.4 EXCESS PROPERTIES

The deviation of a property from its ideal-solution value is called the excess property.

E _ 5 _
VE=V-VE=¥- '\, 1119

i

0.25 4

0.05 -

0 0.2 04 0.6 0.8 1

X4

Figure 11.9 Excess volume for the 3-pentavione (1) + I-chlomoctane
(2) system ar 295.15 K.
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E _ 5 _
HE=H-H*=H-) x,H, 11.20

‘

A solution with /7 ” > 0 has an endothermic heat of mixing, and when /7 Ee 0, the heat of mix-
ing is exothermic. In an adiabatic mixing process an endothermic mixing process will cool and
an exothermic mixing process will heat.
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11.5 MODIFIED RAOULT'S LAW AND EXCESS
GIBBS ENERGY

GE=G - Gis

- [(;_ g:i(}".} - [G“ - Zx,-G‘.]

i

= AG,, ~AGE,_ = AG,, —RTY xIn(x)

‘

G - Z‘ré/‘z

L—uy = RTln£
/‘ "‘ j-o
‘

OAcﬁvny. a,== = X.¥

oEmeesGlbbe
11.2]1 energy.
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AGp = G- xG. = D x{u;~G) = RTZx‘.InL{j 11.24

i i

AG_. = RTY xIn(a) = RTY xn(x,; 11.25
i i

GE=AG,, —RTY xIn(x) = RTY xin(xy)-RTY xIn(x) = RTY xin(y) 1126
i i i i

GE = RTY xin(y) 11.27

‘

Om..o.,.,. Note that the activity coeflicients and excess Gibbs energy are coupled-—when the activity
energy s zeroforan  coelficients of all components are unity, the excess Gibbs energy goes (o zero. The excess Gibbs

Kanl solution, and ta ¢ P : :
" energy is zero for an ideal solution,
activity coeflicients

e unity,

Example 11.1

3%

= X;Iny; +x;Inp,

23



GE = RTY xn(y,)

Activity Coefficients as Derivatives

G —E
(U—‘G—E] = G; = uf = RTIny, 1128 O, coem
M T’P’"j"' clants are relaled to
Ihe partial molar ex-
cess Gibbe energy.
E
G" G _ _ my
ﬁ - Alz.\'l.l'z ﬁ . n(Allexz) - (Alznz)(: 11.29

I (EG 1 n N,r o n
RT\8n,/1,p,n, "N "z[,, ) 2l 7 (1—x)
Iny, = Ax% ; similarly Iny, = Ax12 11.31
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11.6 REDLICH-KISTER AND THE TWO-PARAMETER
MARGULES MODELS

E
G
m7 At
G _ N 2
RT X1 Xo(B 1y T C (X —x) + Dpy(x; —x5) +..0) 11.32

Two-Parameter Margules Model

E 10

G__ .
T X Xo( Ay %, +A5%,) 11.33

where we relate the constants to the Redlich-Kister via Ay = B, + C5, A3 =B, —Cp,and D, =
0. The constants A4,, and A, are fitted to experiment as we show below. Note that if A,, = A,,, the
expression reduces to the one-parameter model. The expression for the activity coefficient of the
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- 42
Iny, = Ap x5

1 (8GF _ _ ') 1 n] . "1) )
Inyy = 33 [(Ag + (1 —x) (A — A5+ (Ayy — A3)x4] 11.36

Iny, = 33 [Ayy+ 2y —Ap)x,] ; similarly Iy, = X[, +2(dy,—4,)%,] 1137

The two parameters can be fitted to a single VLE measurement using

| Iny, 2In; Iny, 2In |
Ay =(2-1) 20+ 4 = (2-1) =220 11.38
R B o M B )
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Example 11.5 Fitting one measurement with the two-parameter

Margules equation

We mentioned following Example 11.2 that a single experiment could be used more effectively with
the two-parameter model. Apply Eqn. 11.38 to the two activity coefficients values calculated in
Example 11.] and estimate the two parameters. This is an example of a Stage IT calculation.
Solution: From Example 11.1, x; = 0.6369, x, = 0.3631, and »; = 1.118, 3 = 2.031. From Egn.
11.38,
Ay = (2_ 1 )lnl.118+2ln2.031 - 1.99
0.3631/ 0.3631 0.6369
1 YIn2.031 2Inl.118
Ay = (2 — + = 1.09
2 0.6369/ 0.6369  0.3631
(oL M+2In_/2 = L M+mﬂl 0.45
Ay (2 _xz) X, S A (2 x,) x, X, 04 4 - i—
035 + ’.‘ /”—-‘
CE 034 v S
% = X X5(Aqx, +A45%,) E 0.25 4+ ’,/.//, N <
T 02+ / ,-" // = Experimental Data \'\
0151 4 // — — — 1-parameter Margules N\
/ \
01+ /77 — - — - 2-parameter Margules
0.05 ¢+ 2-parameter van Laar
04— : Coe
0 0.2 0.4 0.6 0.8

Liquid Mole Fraction of 2-propanol

Figure 11.3 Hlusiration of calculation of G* from experiment and fitting of Margules models to a single

point as discussed in Examples 11.1 and 11.5, for 2-propanol + waler, with the experimen-
tal data points from Fig. 10.8 on page 395. Data are tabulated in Example 11.8. The van
Laar model fit to a single point is explained in Section 12.2.
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Example 11.6 Dew pressure using the two-parameter Margules equation

Use the parameters of Example 11.5 to predict the dew-point pressure and liquid composition
for the 2-propanol(1) + water(2) system at 7 = 30°C, y, = 0.4, and compare with Fig. 11.5. Use

sal sal

the vapor pressures, Py = 60.7 mmHg, P,™ =32.1 mmHg.
Solution: We will apply the procedure in Appendix C and refer to step numbers there.

Step 1. Refer to Chapter 10, P = 1/(0.4/60.7 + 0.6/32.1) = 39.55 mmHg,
x; = 0.4(39.55)/60.7 = 0.26. We skip Step 2 the first ime.
Step 3. Using garameters from Example 11.5 in Eqn. 11.37,
71 = exp(0.747°(1.99 — 1.8(0.26)))=2.30; %= exp(0.262(1.09 + 1. 8(0.74W=1_18.

0 Dew-presgure
calculation.

Step 4. P=1/(0.4/(2.3-60.7) + 0.6/(1.18-32.1)) = 53.46 mmHg
Note the jump in P compared to Step | for the first loop.
Step 5. x; = 0.4(53.46)/(2.3-60.7) = 0.153. Continuing the loop:

. 2
Iny, = x3 [A},+2(Ay, —Ap)x,] ; similarly Iny, = x{[Ay, +2(A;5—45,)x,]

" 7 P (mmHg) Xy
3421 1.063 51.26 0.0987
4.359 1.027 50.73 0.0767
4.849 1.016 50.62 0.0688

Continuing for several more iterations with four digits, P = 50.63 mmHg, and x; = 0.0649. The
calculations agree favorably with Fig. 11.5. The dew calculations are consistent with a bubble cal-
culation at x; = 0.0649.
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Figure 11.5 (a) One-parameter and two-parameter Margules equation fitted to a single measurement
in Examples 11.2 and 11.5 compared with the experimental data points from Fig. 10.8 on
page 395. Data ave tabulated in Example 11.8. (h) Activity coefficients predicted from the
parameters fitted in Example 11.5 compared with points calculated from the data.
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Table 11.2 Summary of Empirical Activity Models and Simplifications Relative to the Redlich-Kister

Model G*RT Iny, Simplification
Redlich-Kister Tl Bz Li‘(i(lx_‘;zxfz)i ] ¢f Practice problem P11.2 |-
m«:esrnvo- YA + A1) XAy + 2y} 321]-1-2,;24_4&;81&(312;
l}:::gn:ﬂ::rone- x4y, Xy 2::3:::%1 N
Ideal solution 0 0 Bz = Ciz=Dy2~0
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11.7 ACTIVITY COEFFICIENTS AT SPECIAL
COMPOSITIONS

Azeotropes

Many tables of known azeotropes are commonly available.'? For systems with an azeotrope, 1)
the azeotropic pressure and composition provide a useful data point for fiting activity coefficient The azeotrope
models because x; = y;. Then 7, = P/P{%"; y,= P/P35%" . Then the typical single point fitting for- ra:",::th:r:f’ inttofit
mulas are used with the azeotrope composition to find the model parameters.

70

ar at
P =y PayyP = sy Py P

_Modified Raoult’s Law

35
30 P =y Pay,P = o P, P
25 Raoult’s Law
20 4+——
0 05 1

X2.0ronanols ¥2-oronanol

The location of an azeotrope 1s very important for distillation design because it represents a point at
which further purification in a single distillation column is impossible. Look back at Fig. 11.1 on
page 412. Looking at dilute isopropanol concentrations, note X 00001 = 0.01 < vy 00, but near
PUnty, Xp onanal = 099 = ¥ qronang- The relative magnitudes have crossed and thus we expect
Y2-peopanol = X2-peopancl (1-€., there 1s an azeotrope) somewhere in between. If the relative sizes are the
same at both ends of the composition range, then we expect that an azeotrope does not exist.'! Cer-
tainly, the best way to identify an azeotrope 1s to plot T-x-y or P-x-y. but a quick calculation at each
end of the diagram is usually sufficient.
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We noted in Section 10.7 on page 393 that azeotropic behavior was dependent on the magni-

tude of deviations from ideality and the vapor pressure ratio. Look back at Fig. 11.1 on page 412

and recall that deviations from Raoult’s law create the curve in the bubble line. When the pure com-

ponent vapor pressures are nearly the same then a slight curve due to non-ideality can cause an

azeotrope. The same size deviation in a system with widely different vapor pressure may not have

0Any deviston  an azeotrope. A plot of logP* versus 1/T with both components may show a point where the two

from ideality will cre-  yryes cross when the heats of vaporization are different. This point is called a Bancroft point.
ate an azeofrope at

a Banorolt point Since the vapor pressures are exactly equal at the Bancroft point, any small non-ideality generates

A Bancroft point is the temperature where an azeotrope occurs in a binary system. Although vapor liquid azeotropy is
impossible for binary systems which are rigorously described by Raoult's law, for real systems, azeotropy is inevitable at
temperatures where the saturation vapor pressure of the components are equal. Such a temperature is called a Bancroft

point. However, not all binary systems exhibit such a point. Also, a Bancroft point must lie in the valid temperature ranges of
the Antoine equation.

Bancroft point is named after Wilder Dwight Bancroft.

Could find an Azeotrope by setting Antoine
eqgn for two components equal and solving

for the temperature (must be in the range
of the AE).
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Born in Middletown, Rhode Island, he received a B.A. from Harvard University in 1888, a Ph.D. from University of Leipzig in
1892, and honorary SCDs from Lafayette College (in 1919) and Cambridge University (in 1923). He was the grandson of
historian and statesman George Bancroft and great-grandson of Aaron Bancroft.

He was an assistant chemistry instructor at Harvard University from 1888-1889 and 1893—-1894, then a full instructor from
1894-1895. He then became an assistant professor at Cornell University in 1895, then a full professor (at Cornell) in 1903.
He was elected a Fellow of the American Academy of Arts and Sciences in 1913.!"]

Bancroft was trained by Wilhelm Ostwald and Jacobus Henricus van 't Hoff, and introduced a number of thermodynamic and
colloid-chemical concepts into American physicochemistry. He is known for the Bancroft rule: a predominantly hydrophilic
emulsifier stabilizes an oil-in-water emulsion, whereas a predominantly hydrophobic emulsifier stabilizes a water-in oil
emulsion.

The lunar crater Bancroft is named in his honor.

His daughter, Mary Warner Bancroft (1896—1967) married another Cornell chemistry professor, Melvin Lorrel Nichols (1894~
1981).
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Example 11.7 Azeotrope fitting with bubble-temperature calculations

Consider the benzene(1) + ethanol(2) system which exhibits an azeotrope at 760 mmHg and
68.24°C containing 448 mole% ethanol. Using the two-parameter Margules model, calculate the
composition of the vapor in equilibrium with an equimolar liquid solution at 760 mmHg given the
following Antoine constants:

log A" =6.87987 — 1196.76/(T + 219.161)
log Bf9% =8.1122 - 1592.86/(T + 226.18).

. 2
Iy, = x3 [Agy+2dy, —A)x,] ; similarly Iy = x7[45, +2(4;p—45)x,] 1137

l)lny,’Zln;/z 1138

Ap = (2‘-

1 ) Inyy . 2Iny,
Xy X *1

4y =(2-L
a X7 % %2

Solution: At T=68.24°C, P]“' =519.7 mmHg; pFat = 503.5 mmHg, and the azeotrope com-
position is known, x; = (.552; x, = 0.448. At this composition, the activity coefficients can be
calculated.

n= (nP)/(x,P}") = PIP*®=760/519.7 = 1.4624; likewise, 7, = 760/503.5 = 1.5094 O

deviations from
Using Eqn. 11.38 with the composition and s just tabulated, A;, = 1.2947, 4,,=1.8373. Raoult's law, 7> 1.
New activity coefficient values must be found at the composition, x; = x, = 0.5. Using Eqn.
11.37, y; = 1.583; »»=1.382. The problem statement requires a bubble-temperature calculation.
Using the method of Table 10.1 (a flow sheet is available in Appendix C, option (a); a MATLAB
example is provided in Ex11_07.m), OBM Pa—
ature calculation.
Guess T= 60°C = P{? = 391.63 mmHg; P5? = 351.82 mmHg. For this model, the activity Heoi orm

coefficients do not change with temperature. The K-ratio depends on the activity coefficients:
yi=x; % B [P =y, = 0.408; y, = 0.320;
Checking the sum of y,, Zy,- =0.728 = Tgyeq 18 too low. Try a higher T.

1

After a few trials, at 7= 68.262°C, P{?"=520.13 mmHg; P5?" = 504.1 mmHg

V=% 7 B /P =y =0542;37=0458; D ;=1 = Tgues i8 Topoomope:




Bubble T Appendix C pp. 832

(Choose one flow sheet.)

a_ . 2
‘ Iy = x3 [A,,+ 24y, —A,)x,] ; similarly Iny, = x7[45, +2(4;,— 45,)%,] 11.37

A|2=(2—xl)¥+21:—72 Ay, =[ —})%+@ 11.38
Option (a) Option (b)
. Know x;, P 1. Know x, P. Guess T (e.g.. Eqn. 10.22).
Guess 7'(e.g.. Eqn. 10.22). I
¥ B sai
2. Caley, P I‘— 7. Guess T 2-Peate = Zx,y,l’,
x 2 i
! Adjust Tuntil ;.= P
3y7 xf{lplm’ =xK;
P 3. Bubble 7 found.
l Y= xy;P lm’ =xK;
4 . - P
g Z,V,
ll

6.1fy,> 1, T}
5y=1 >N—- Ify; <1, 71
Yes >
8. Bubble 7 and
y; found
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11.7 ACTIVITY COEFFICIENTS AT SPECIAL
COMPOSITIONS

Purity and Infinite Dilution

PimmHg)
8 B 86 8 &8 65 8 87 3

lim ; = 1 and lm y; = »; 11.39
x,—1 =0

10

ot
B

74

8 -

b 54

4

3 -

— — — 1-parameler Margules 2 4
2-parameler Margules 1
: - - . 0

0 0.2 0.4 08 0.8 1
X Y Xy
(a) (b)

Figure 11.5 (a) One-parameter and two-parameter Margules equation fitted to a single measurement
in Examples 11.2 and 11.5 compared with the experimental data points from Fig. 10.8 on
page 395. Data ave tabulated in Example 11.8. (b) Activity coefficients predicted from the
parameters fitted in Example 11.5 compared with points calculated from the data.
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Purity and Infinite Dilution

. s 2
Iny, = x3 (A5 +2(Ay, —A5)x,] ; similarly Iny, = x7[4,5, +2(A4,5—A4,,)x,]

Ay = Iy, Ay = Inyy

11.37
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11.8 PRELIMINARY INDICATIONS OF VLLE

composition. Occasionally when a P-x-y or 7-x-y diagram is generated in a Stage I1I calculation, the
diagram can look very odd. The two-parameter fit in Fig. 11.5 was generated using 4, = 1.99, 4,
= 1.09 as fitted in Example 11.5. Suppose, due to a slight calculation error or programming typo, we
generated a diagram using parameters A |, =2.99, 4, = 1.09. The predicted phase diagram and y-x dia-
gram would look like those shown in Fig. 11.10.

70 10
5 8
80 B
55 7]
. *
F% ¢
£ 45 b4
£ *1
o 40 + 4
36 3
30+ 2
I — — — 1-parameler Margules 1
251 2-parameler Margules 1
m U S S S W S S S S S S S S S S S o .
0 0.2 0.4 08 0.8 1
X V1 Xy
(a) )]

Figure 11.5 (a) One-parameter and two-parameter Margules equation fitted to a single measurement
in Examples 11.2 and 11.5 compared with the experimental data points from Fig. 10.8 on

page 395. Data are tabulated in Example 11.8. (h) Activity coefficic
parameters fitted in Example 11.5 compared with points calculated

The behavior of the lines using these parameters actually predicts that two liquid phases exist.
However, the diagram requires additional modification before coexisting compositions and the
vapor-liquid-liquid equilibria (VLLE) can be read from the diagram. Tt is important to understand
that the diagram has been generated assuming that only one liquid phase exists. Though we started
the discussion by assuming that a parameter calculation error resulted in predictions, all systems
that exhibit VLLE will have similarly odd diagrams when only one liquid phase is assumed to
exist. This assumption is the default in common process simulators such as ASPEN Plus and
ChemCAD because the calculations are faster when the simulator can avoid checking for two
phases. When working with simulators, you should check the phase diagrams to see if liquid-liquid
phase behavior exists and you should understand where to change the simulator settings to calcu-
late liquid-liquid behavior when it exists. Within this chapter, you should be ready to recognize that
such diagrams are indicative of two liquid phases. Also recall that a T-x-y diagram qualitatively
resembles an inverted P-x-y, so peculiar loops appear on a T-x-y diagram if a similar situation
exists. When models incorrectly predict VLLE behavior that we know to be incorrect, we need to
check our calculations. We learn how to rigorously characterize VLLE phase diagrams and how to
eliminate the loops in Chapter 14.

P{mmHg)
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|
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— — — 2-parameter Margules 0.1 1

| 0¥ — e
+ + + +

T 1
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X, ¥ (2-propanol) X, 2-propand

Figare 11.10 Phase diagram calculations for the 2-propanol + water system at 30°C compared with data

cited in Example 11.2. The parameters wheve selected as described in the text to illustrate
how a numerical error can result in thermodynamically unstable loops. Note the dew line has
a has a loop and the maximum in the bubble line is not at the azeotropic condition. Note in
the y-x plot thal the coexistence curve has maxima and minima. These calculated conditions
are indicative of LLE as discussed in the lext, though the experiments do not show LLE.



11.9 FITTING ACTIVITY MODELS TO MULTIPLE DATA

10

G—E = Xy %,(A,x, +A5%,) 11.33
. I . RT
Linear Fitting of the Margules Equation
Egn. 11.33 can be linearized:. 0Margu|“md.
els can be linear-
G ized for fitting of
ToRT = (Azl — A )% A4, 11.40 parameters.

Nonlinear fitting techniques

OB.J = z (P cxpt calc
all points

Solver tool or the MATLAB fminsearch or Isgnonlin can provide rapid fits. The spreadsheet Gam-
mafit.xlsx or MATLAB m-file GammaFit.m permit nonlinear fitting of activity coefficient parame-
ters for the Margules equation by fitting total pressure. Either can be easily modified to find
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;l(hmmehL
Gammafit.m.

Example 11.8 Fitting parameters using nonlinear least squares

Measurements for the 2-propanol + water system at 30°C have been published by Udovenko, et al.
(1967).* Use the pressure and liquid composition to fit the two-parameter Margules equation to
the bubble pressure. Plot the resultant P-x-y diagram.

Solution: In the experimental data, the researchers report experimental vapor pressures. It is
best to use experimental values from the same publication to reduce the effect of systematic
errors which may be present in the data due to impurities or calibration errors. The solution will
be obtained by minimizing the sum of squares of error for the bubble pressures across the com-
position range.
MATLAB (condensed to show the major steps):

function GammaFit ()

¢ statements omitted to load experiments inte matrix ‘Data’

x1 = Data(:,1); %data have been entered into columns of ‘Data’

ylexpt = Data(:,2); Pexpt = Data(:,3);

PslCalc = 60.7; Ps2Calc = 32.1; texperimental wvalues used for Paat

x2 = 1-x1; % calculate x2

x = [x1 x2)]; &% create a 2 column matrix of x1 & x2
A= [0 0]); % initial guess for 212 and A2l
A4 = lagnonlin(@calcError,A); %optimize, calling ‘calcError’ as needed

function oby = calcError(A)
AlZ2 = A(l); %extract coeffs zo egns lock like text
R21 = RA(2);

GammzlCale = exp((x2.72).*(Al2 + 2* (A21 - R12).*x1));

Gammz2Cale = exp((x1.72).*{(A21 + 2* (A1l2 - R21).*x2));

Pcale = (xl1l.*GamrmalCalc)*(PslCalc) + ...

(x2.*Gamma2Calc) * (Pas2Calc);
obj = Pcalc - Pexpt;
end

The resultant parameters are A, = 2.173, A5, = 0.9429. The distributed file includes statements
to plot the final figure similar to that shown below. Note that fminsearch can be used if 1sqnonlin
is not available due to the toolboxes on your MATLAB installation. See the fitin Fig. 11.11.




Example 11.8 Fitting parameters using nonlinear least squares

(Continued)

Excel: The spreadsheet “P-x-y fit P” in the workbook Gammafit.xlsx is used to fit the parame-
ters as shown below. Antoine coefficients are entered in the table for the components shown at
the top of the spreadsheet. The flag in the box in the center right determines whether experimen-
tal vapor pressures are used in the calculations or values calculated from the Antoine equation.

Antaine Coefioents L"
Sysiem Companents Paramaters {o adjust | & B c P“(mm (mm He)
(1) 2-propancl Az Aas T(C) 1| aa7a2s 201033 2 68.2778 80.7
(2) warler 2.173066) 0.842628] 0 807131 1730.63 23&423' 31.74018 a2.1 32.
e Ll
x4 |%a [rroox [ [Voss  [vusse  [yiee  |Viewe  [Pow |Pok  [(Pawe)  [ENGSF 110 uSe Cacuaied P
0 1 8.785079 1 0 1 0 1 321 &1 0f Enter 0 to use Expt P™
0.0016  0.8C85 8605082 1.000008 00254 0.9748 0.024107 0.975893 338 32.84388 0.8141064] [

0.0111 09689 81629068 1.000418 01374 0.8628 0.147468 0862532 A71 37.25008 0.0225244

0.0231 09769 7.635179 1.001787 02803 0.7397 0.251881 0.748318 423 4198014 0102312

0.0367 08643 8.95177 1.004234 03677 0.6423 0.328426 0673574 472 48.14962 1.1035186 e Fun
0.0545  0.8351 5816504 1.013756 04804 0.6398 0420861 0.67048 65 53.33838 2.7TE76741 1426758436

01188 0.8832 4353264 1043423 05316  0.4684 0.610802 0.484388 80.3 60.44532 0.0211182
0.187 0.803 2870388 1116628 056847  0.4453 (.651865 0448345 829 64.38587 2.2110888
0.2271 07729 2.62311 1158008 05811 0.4389 0.657245 0442786 835 64.88977 1.8314538
0312 0.688 1845006 1202474 05858  0.4341 0.663409 0436591 84.4 863783 0.8690361
0.3958  0.8042 1.549300 1483142 05907  0.4083 0.667416 0432584 86.1 65.69982 0.2495163
0.4477  0.5623 1.286629 1.586208 0.689 0.411 0.672844 0427358 86.8 65.80383 1.488E.06
0.5006 04891 1.264086 1.724032 06068  0.3902 0.681846 0418154 866 66.05434 0.2977462
0.6386 03631 1.083162 2106142 08462  0.3538 0.630433 0289587 869 66.42417 0.2264146
0.7542  0.2458 1.01937 24117089 07286  0.2704 0.710248 0.289552 G6.8 66.69561 1.2198966
0.8245 01765 1.004463 2548001 07762  0.2248 0.778018 0221982 86.7 64.61363 1.1804186
0.9383  0.0637 0668471 2622202 08862  0.1108 0.913749 0.086251 832 62.16513 1.0709808

1 0 1 2587492 1 0 1 0 80.7 60.7 0

Experimental data for x; and P,,,, are entered in columns A and I. Initial guesses for the con-
stants Ay, and A5, are entered in the labeled cells in the top table. Solver is then called to mini-

mize the error in the objective function by adjusting the two parameters. Calculated pressures
are determined by bubble-pressure calculations.

The results of the fit are shown by the plot on spreadsheet “P-x-y Plot.” See the fit in Fig. 11.11.
Note that the system is the same used in Example 11.2 on page 417 and Example 11.5 on page

430. The fit in this example using all data is superior. The parameters are also slightly different
from the linear fit discussed above because the objective function is different.
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Figare 11.11 Comparison of experimental dala with regressed model as explained in
Example 11.8.
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Alternative Objective Functions

2 2 2 2
Z (Ptrue_Pe.tpz)i +(Ttrue_ Texpt),' +(xltrue_xle17n),' + O'1erue =N erpr),-

2 2 2 2
points Gp Or a, Oy,

op=2mmHg, 6;=02K, 5,=0.003, o,= 0.01,

11.41
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11.10 RELATIONS FOR PARTIAL MOLAR PROPERTIES

Gibbs-Duhem Equation

dG = VdP - SdT+y udn,

G = Zn G; = anu or G = Z = Zri,ui
7
dG = Z;l dn; +Zn du;
Z“z‘“"i ' Z"id'ui = —SdT+ VdP+ Z‘uzd"i
i

i i
Simplifying, we obtain the Gibbs-Duhem equation,

0 = —SdT+VdP— ) n.du,
i

Therefore, we conclude at constant 7 and P:

Z”id/’i = 0 at constant 7 and P

i

10.40

10.42

11.42

11.43

11.44

11.45
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Gibbs-Duhem Relation for Activity Coefficients

To extend the Gibbs-Duhem equation to excess properties, the excess Gibbs energy can be manipu-

lated in an manner analogous to the derivation above. Therefore,

= —S"dT+V P nmduf

1
resulting in
E _ :
Z"id/’i = 0 at constant Tand P
i
Inserting the relation between excess chemical potential and activity coefficients gives

> mdy; = RTY mding; = 0

i i

dlny, dIny, ) )
x,( ) +x2( J = (  binary at fixed 7 and P

-~ -~

CXi ‘TP X TP

11.46

11.47

11.48

11.49
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This equation means that the activity coefficients for a binary system, when plotted versus
composition, must have slopes with opposite signs, and the slopes are related in magnitude by Eqn.
11.49. A further deduction is that if one of the activity coefficients in a binary system exhibits a
maximum, the other must exhibit a minimum at the same composition. We find this relation useful
in: 1) testing data for experimental errors (grossly inconsistent data); 2) generating the activity
coefficients in a binary for a second component based on the behavior of the first component in
experimental techniques where only one activity coefficient is measured; 3) for development of
theories for the Gibbs energy of a mixture, since our model must follow this relation. The Gibbs-
Duhem equation is also useful for checking thermodynamic consistency of data; however, the

Adlny dIny
x]( : ]) +x2( - 2) = (0 binary at fixed Tand P 11.49
ax; T,P ax; T, P
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Relations between Various Excess Properties

excess functions follow the same relations as the total functions, HE = UF + PVE GE=HEF - TSE
and A% = UF — TS The derivative relations are also followed,

—E.
cLoa S LA
(BT . sE. [5‘7"]“ st 11.50

(fﬁ:) = 7, [Fﬁ] = ¥} for P° = Pyyenm 1151
T.x

oP T.x

(a]n yi) T, x - i

=), = T PP =Py, 11.52

The Gibbs-Helmholtz relation applies:

(aGE/ _ " [aGf/TJ _-H

i P ol - 11.53

Particularly useful is Eqn. 11.53 using the relation with activity coefficients:

11.54

(Bln }’,—‘) - f]f

eT P,x_ RTZ

Therefore, excess enthalpy data from calorimetry may be used to check the temperature depen-
dence of the activity coefficient models for thermodynamic consistency. Typically, activity coeffi-
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Example 11.9 Heats of mixing with the Margules two-parameter model

Fitting the VLE of methanol + benzene® in the range of 308-328 K with the Margules two-
parameter model and then fitting the parameters to 4y = ay + by/T gives A, =0.1671 + 714/T
and A, = 2.3360 — 247/T. Estimate the heat of mixing at 318 K and 50 mol% benzene.

Solution: The Margules two-parameter model is,

E (s -=H, (

G _ T /px 2 :
77 - N1%aldy ¥y T 4pp%)) !
The relation between G~ and H is given by Eqn. 11.53. Noting the right side Margules parame-
ters for the problem statement are simple functions of (1/7), we can manipulate the derivative

for this function. Since d(1/T) = —T2dT,

((8G" /(RT))/(8T)) = ~T-H(8G" /(RT))/(8(1/T))) = —HE/(RT?) 11.55
Thus . .
: H X exdd, xpddA 714 24
RT T(d(l/77)+d(l/ V- x"‘Z("17'x27

At318Kandx,; =x,=0.5, H =83 14(0.5)(0.5(0.5-714 — 0.5-247) = 485 J/mol. Note that direct
measurement of excess enthalpy is recommended when possible. Phase equilibria data must be
very precise to provide an accurate enthalpy of mixing.

X Hy x,H
H _%h oH (x 74 _ Zﬂ) 11.56

=,

~




11.11 DISTILLATION AND RELATIVE VOLATILITY OF

NONIDEAL SOLUTIONS

discussion of distillation. The relative volatility of the light to heavy key, @z 1s important to distil-
lation, as discussed in Section 10.6. Since ¢ may not be constant over an entire distillation col-
umn, it 1s common to estimate the average value by the geometric mean of the bottom and top.

ap™ = (g Pa 11.57
Recalling the defimition of @z from Eqn. 10.32, substituting Eqn. 11.18, and canceling pressures,

arr= Kix/Kex = (i’ WrxPrx'™) 11.58

Suppose in a binary mixture that we specify splits so that the top is x5 = 0.99, and xm’"" =0.01.
Then recognizing that the activity coefficients go to unity near purity,

a ™= [P ™Y PN enm™ = ek "Prc™) (PP 11.59
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Example 11.10 Suspecting an azeotrope

Make a preliminary estimate of whether we should suspect an azeotrope in the system benzene
(B) + 2-propanol (7) at 80°C. Assume the MAB model. A convenient feature of Margules one-
parameter models (including the MAB model) is that the infinite dilution activity coefficients are
equal. (Note that “convenient” may not equate to “accurate.”)

Solution: Note that this problem is isothermal rather than a distillation column design, but we
can evaluate the relative volatility at either end of the composition range. Antoine.xlsx gives
vapor pressures of Pg**'= 757 mmHg and P = 683 mmHg at 80°C, so benzene is the LK. For
the MAB model,

Az =(9.23 — 0.63)(11.86 — 2.24)(89.8 + 76.8)/[4(8.314)353] = 1.174;

7% =exp(1.174) = 3.235

Using the component key assignments, Py /Pr™® = 757/683 = 1.108. Therefore, at the end
rich in LK, apg = (Pr™™)(rax Prg’™) = 1.108/3.235 = 0.343, and the end rich in HK, apy=
(ix" Prd ™YW (Pe™) = 3.235-1.108 = 3.58. MAB predicts an azeotrope since (@5 —1) changes
sign. The prediction should be validated with experimental data and/or more accurate models
because of the approximations in the MAB model.

A= (ay = a)(fy= )V, + V)A4RT) 1.9
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Henry’s Law and Raoult’s Law (Wikipedia)

Comparison to Raoult's law |[edit ]

Henry's law is a limiting law that only applies for "sufficiently dilute" solutions. The range of concentrations in which it applies becomes narrower the more the system diverges from ideal
behavior. Roughly speaking, that is the more chemically "different” the solute is from the solvent.

For a dilute solution, the concentration of the solute is approximately proportional to its mole fraction x, and Henry's law can be written as
p = Kyx.
This can be compared with Raoult's law:
_ *
pP=pz
where p* is the vapor pressure of the pure component.

At first sight, Raoult's law appears to be a special case of Henry's law, where K, = p*. This is true for pairs of closely related substances, such as benzene and toluene, which obey
Raoult's law over the entire composition range: such mixtures are called "ideal mixtures".

The general case is that both laws are limit laws, and they apply at opposite ends of the composition range. The vapor pressure of the component in large excess, such as the solvent for a
dilute solution, is proportional to its mole fraction, and the constant of proportionality is the vapor pressure of the pure substance (Raoult's law). The vapor pressure of the solute is also
proportional to the solute's mole fraction, but the constant of proportionality is different and must be determined experimentally (Henry's law). In mathematical terms:

Raoult's law: lim (I—)) =p*.

z—=1 \ 1
Henry's law: lim (g) = Ky.
z—0 \T

Raoult's law can also be related to non-gas solutes.

52



Henry’s Law and Raoult’s Law
HW Problem 10.8
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11.12

LEWIS-RANDALL RULE AND HENRY'’S LAW

Henry's Law ;0 _ Sy oy
Ideal Solution, J2 = x5k —a

-~

-~
-~

Real -~ (J"f; “J3

. Solution _7A g : sat psat
1 P Jo= e Py o
) T Common for liquid
z .- - -12 = (oél’
T et al ommon for vapor
~ -« Lewis/Randall . P

~Ideal Solution, /3’ = x,f5

) X O1)? :

Figure 11.12 Schematic representation of the fugacily of component 2
in a binary mixture.

The Henry’s Law Standard State

Y=, I1.13 cients are com-
x.f; monly used for
highly non-ideal
solutions.
Cis pf = Fis — :
O e Randan =5 = ifi
rule for component
fugacity in an ideal
solution. : . — . . .

Consider that the fugacity curve in Fig. 11.12 is nearly linear at low concentrations. Thus, we
could express the component fugacity as proportional to concentration using a tangent line near
infinite dilution,

~is _
@ Ideal Henry's fi = xhy 11.60
law component.

which is the behavior of an ideal solution given by Henry's Taw.

10.68

54



Henry’s Law ) ‘/‘2" = hy
Ideal Solution, i = 5/
Real ’ Y
; _,.f" 2
5 Solution \5\ 1y~ wza'PWf
= Common for liquid
- J: 2= (0&
Lc\Vls-"Randa]l N ommon for vapor

™ Ideal Solution, /3" = x,f5

0 0 Ory? :

Figure 11.12 Schematic representation of the fugacily of component 2
in a binary mixture.

s _
0 Ideal Henry's f; - xzhi
law component.

which is the behavior of an ideal solution given by Henry’s law.

11.60

The Henry’s law constant, A, is usually determined experimentally, and depends on tempera-
ture, pressure, and solvent. The fact that it depends on solvent makes it very different from a

pseudo-vapor pressure because a vapor pressure would be independent of solvent.
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Henry's Law Sy oy
Ideal Solution, /2 = %Mz —a-
Real f'° = Ja

; _,_,/'
f Solutlonj\v\ Jo = 032t psat

Lz - Cornmon for liquid

jzzw&

M\WS:’Randa]l ommon for vapor

~Ideal Solution,f% = Xaf5

’ 0 Ory? l

Figure 11.12 Schematic representation of the fugacily of component 2
in a binary mixture.

0 Henry's law i = x-}’-‘h- 11.61
for non-ideal
solution. Gamma i star is at infinite dilution

activity, Eqn. 11.23, we see that a; = x;; = f,/f;°. Comparing with Eqn. 11.61, we sce that the
standard state is £;° = k. So the important activity coefficient value is at infinite dilution, but the
standard state composition is a hypothetical pure state. This perspective is especially useful for
electrolyte solutions.

aiz - .(".}". 11.23
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Relating ;; for Henry’'s Law and Lewis-Randall Rule

Note in Fig. 11.12 that both Henry’s approach and the Lewis-Randall approach must represent the
same fugacity. Equating the two approaches,

fi = X by = X 11.62

Taking the limit at infinite dilution where 72' approaches one, and we see

-

£ = xh; = x50 f; at infinite dilution 11.63
resulting in the relation between the Henry's and the Lewis-Randall fugacity and activity coeffi-
cient,
‘h,-=ﬁ°f,’-‘ 11.64 @ pgton
between Henry's
Law consfant and
T = oy Lewis-Randall
enry’s Law %o _ LSy oy fugacity.
Ideal Solution, /2 Xphy A
Real -~ ’ ~ Ly = f
" . -~ _’_{_/.' N 2 2
f Solution ) ;7_\_-1.-’-;, f, = oAt P3ar
) e Commoen for liquid
/_. I fz*‘(oép
A - “Lewis/Randall . ommon for vapor

"~ Ideal Solution, /3’ = x,f;

0 X2 OT Y2 :

Figure 11.12 Schematic representation of the fugacily of component 2 57
in a binary mixture.




In Fig. 11.13, look at the right side where Inj, approaches Iny,“ and In 72. approaches zero. The
difference in the intercept at x; = 0 is In(/,/f,) . To model the Henry’s law activity coefficient, the
restriction that the activity coefficients must follow the Gibbs-Duhem Egn. 11.49 remains; thus, the
slope of the logarithm of the Henry’s law activity coefficient must be the same as the slope of the
logarithm of the Lewis-Randall activity coefficient—the shift is independent of composition. The
shift is illustrated in Fig. 11.13. We may adapt any activity model developed for the Lewis-Randall
rule to Henry’s law by shifting the intercept values for the components modeled by Henry’s law.

Thus,

ln;/; = Iny;—Iny°

11.65 0 Formula to ghift

a Lewis-Randall
activity model to a

where any Lewis/Randall model can be used for y; and the same model is used for 7. Usually the i n0o gy
activity coefficient model is manipulated to obtain the infimite dilution activity coefficient activity model.

*
In y;

v h e
S ony e '"[j_‘j | hy = ¥i'f;
S
‘Inp =0

Because it follows LR here

1

Figure 11.13 Schematic illustration of the relation of the Henry ¥ law activity coefficient compared (o

0 Unsymmetric
activity coefficients
for Henry's law
basad on the
one-parameder

Margules equation.

the Lewis-Randall rule activity coefficient.

Iy = Inpp—Inyg =dpxd—dp = Ap(—1) Iny = 4p,(x3) 160



Henry’s Law on Molal Activity Scale

0 Henry's law
for non-ideal
solution.

0 Molal activity
coefficients and

Henry's law.

fi = x;7; by 11.61

Egn. 11.61 suggests that the units for the Henry’s law constant should be pressure, but other con-
ventions also exist. For example, a common way of presenting Henry’s constants for gases is to
express the liquid phase concentration in molality and provide a constant inverted relative to i,
The result is

fi=xpi by =myB/(K,) 11.67
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Example 11.11 Solubility of CO, by Henry’s Law

Carbon dioxide solubility in water plays a critical role in biological physiology and environmen-
tal ocean chemistry, affects the accuracy of acid-base titrations in analytical chemistry, and
makes many beverages fizzy. The Henry’s law constant for CO, in water is listed on the NIST
Chemistry WebBook® as Ky = 0.035 mol/’kg-bar at 298.15 K. Estimate the mole fraction of CO,
in water at (.7 MPa total pressure and 298.15 K. Treat the vapor phase as an ideal gas and the
liquid as an ideal solution with the Henry’s law standard state. Neglect formation of ionic car-
bonate species.

Solution: Kgyco, P = mcg, where mcq, is mol/(kgH,0). First find yco, by using Raoult’s law
for water. Taking P,* from the steam tables, Raoult’s law for water gives

¥ = PSP =0.00317/0.7 = 0.0045 == Yco, = 0.9955.
The solubility of CO, is thus,

K HycozP = 0.035(mol’kg-bar)(0.9955)(7 bar) = 0.244 molal

Xco, = Moo, KW 001M,, = meq 0.001M, (1 -x¢q ) =
Y — "‘C()zo-ml "w“’; W — 0.244(0.0 | 8) = 0.0044
€O T +m., 0.001M I +0.244(0.018)

CO, " w,w . ’

The ionic species ignored here in this binary system are sufficient to lower the pH, and though
essential for comprehensive understanding, the concentrations are small relative to the molecular
CO; modeled here. In physiology or ocean chemistry, many other salts are involved which make
the equilibrium more complicated. Chapter 18 addresses several issues of ionization.
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Dilute Solution Calculations Using Hypothetical Lewis-
Randall Fugacities

~

f; = xh; = x;° f; atinfinite dilution 11.63

Dissolved gas solubilities can be modeled by treating the liquid phase and vapor phase both with
direct use of an equation of state (to be discussed in Chapter 15). However, Eqn. 11.63 suggests that
we can model dilute solutions relative to the Lewis-Randall rule. Looking at Eqn. 11.63, you can
appreciate why the Henry’s law constant depends on solvent—the Lewis-Randall y;* will be differ-
ent for every solvent. The activity coefficient models we have developed can take 3™ into account.
What we need is a manner to correlate the fugacity of hypothetical liquids above the eritical point.
A prevalent model for light gases in petrochemicals 1s the Grayson-Streed model (and the closely
related Chao-Seader and Prausnitz-Shair models)."?
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Fig. 11.14 shows several generalized estimates for £~ as a function of reduced temperature. The
Grayson-Streed estimates vary substantially depending on whether the general correlation is
applied (GS-0) or specific correlations as for methane (CHy) or hydrogen (H;). The Grayson-Streed
estimates have limits in their range of temperature that are reflected by their ranges in Fig. 11.14.
The Prausnitz-Shair correlation gives a single curve for all compounds regardless of their acentric

2.5
- . —.GS-0
- GS-H2
~ = — GS-CH4
1.5+ o Ps
SCVP

SCVP+

1T,

Figare 11.14 Comparison of correlations for liguid fugacity al high temperature as described in the text.
GS = Grayson/Streed, PS = PrausnitziShair, SCVP ~ shortcut vapor pressure equalion.,
SCVP+ = extended shoricut vapor pressure equation. (o ~ 0.21 jor SCVP and SCVP+)

G SCVP+ log ol j" fPY=T(1 w1 -T/T)V3 -3exp(-3T/T) SCVP+ equation 11.68
model for

extrapolating This correlation 1s designed to match the shortcut vapor pressure (SCVP) equation at 7<= 7. It
LEnuia-Runtiol provides a reasonable match of the Grayson-Streed estimates for CHgat 7> T, and a fairly accurate
fugacity above . . . . . .

Te. match to the Prausnitz-Shair correlation when a value of @ = 0.21 is applied to Egn. 11.68. It also 5

provides reasonable results for all temperatures. We refer to this as the SCVP+ equation.



Example 11.12 Henry’s constant for CO, with the MAB/SCVP+ model

The solubility for CO, in water at 298 K and 7 bar can be estimated as xq, = 0.0044. Treating
the gas phase as an ideal gas and neglecting any aqueous ionic species, ia) fit  using the
Lewis-Randall rule and the SCVP+ equation for pure CO, and determine the one-parameter
Margules parameter; (b) estimate A,, of the MAB model for CO, in water and 3, and compare
to part (a); (c) predict Henry’s constant at 311 K using the MAB and the SCVP+ equation.
Solution:

(a) First use the SCVP+ equation to predict the hypothetical liquid fugacity,

log ,o( F£/73.82) = T(1 + 0.228)(1 — 304.2/298)/3 — 3exp(—3-304.2/298)

== foo,” = 73.82:107% = 47 bar.

(FYT: The Lewis-Randall standard state by the SCVP model would be 64 bar instead of 47 bar.)
Referring to Example 11.11, the ideal gas vapor fugacity has been calculated there, and we can
equate it with Henry’s law and use the fugacity just calculated with the experimental Xcoy:

Yoo, P =709955 = xcoz."co;cféozL ==y = 7-0.9955/(0.0044-47) = 34.
ln)mzm =A;;,=In(34)=3.52
(b) For MAB the default estimate is Ay = (& — @\, = 1)V + V2)/(4RT)
A =(1.87 =50.13)(0 - 15.06)(44/1.18 + 18/1)/(4(8.314)298) = 4.05
7 =exp(4.05)=574
The MAB prediction for A, is approximately (100%)(4.05 — 3.52)/3.52 = 15% too high.

(c) At311 K, the fitted MAB model suggests that A, =3.52(298/311)=3.37 = lnycozw.
S0, yco, =29

By Eqn. 11.68, logo( £773.82) = 7(1 + 0.228)(1 — 304.2/311)/3 — 3exp(—3-304.2/311) = -0.0968
By Eqn. 11.64, ho, = yoo,” foo,” = 29(10°%%%) =23 bar
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11.13 OSMOTIC PRESSURE

(T, P, pure) + RTna,, + Vi - TI

A

W W+C
AP

mixing
T, P, pure) = iyl T, P, pure) + RTlna,,
(a) (b)
Figare 11.15 () Hlustration of a semipermeable membrane. The membrane is permeable (o component

W, but not component C. The label of W is convenient because waler is a typical solvent.
() Hlustration of the path used in caleulation of the chemical potential in the mixture at

the osmotic pressure.

brane 1s permeable to # but not to C. If the solutions are at the same pressure, P, then component
spontancously flows from the left chamber (higher chemical potential because higher mole frac-
tion) to the right chamber (lower chemical potential because lower mole fraction) in the condition
of osmosis. If the pressure on the right side is increased, the degree of flow can be decreased. When
the pressure has been increased by the osmotic pressure, I'L the sides achieve phase equilibrium
and flow stops. If the pressure on the right side is increased by more than the osmotic pressure, a
condition of reverse osmosis exists and component W flows from the right to the left. Reverse
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0 Relation

between osmotic
pressure and
activity of the
permeable spacies.

At the pressure (P + IT) on the rnight side, inward flow of ¥ stops and the chemical potential 1s
balanced. Let us create a convenient pathway to relate the chemical potential for the pure fluid at P
to the mixture at P + TL We can consider pressurizing the pure fluid and then mixing, or we can
consider mixing the fluid and then pressurizing at fixed composition. Following historical deriva-
tion, it is common to use P as the standard state pressure for the mixing. The mixing process can be
represented by the activity, ag= xp (cf- Eqn. 11.23)

py (T, P, x ) — 1y (T, P,pure) = RTInay, 11.69

For W in a mixture, the pressure effect on chemical potential at constant T is du, = VdP.
Because the liquid 1s nearly incompressible, for the pressure step Au,, = Vi - ((P+T1)—P) and
overall,

AT P+TLx) = AT Pyxy) + V- (P+T)—P) = AT, P,xy) + V- T 1170

The calculation path is illustrated in Fig. 11.16(b). The initial state represents the left side of
the membrane and the final state represents the right side. Equating the chemical potential expres-
sions for the two sides of the membrane results in

1yl T, P,pure) = u (T, P, pure) + RTna,+ V- T
Leading to the relation between osmotic pressure and activity of the permeable species,

m=2y,, 11.71
V"f

The activity can be calculated from any activity coefficient model. Note that because the solu-

tinn 1€ vorv neoarlv more 7 an a malar hacie we calenlate activite rolative tn the T eaneaR andall mile
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[C]. Using the molar volume of # to normalize the expression per mole of W, the McMillan-Mayer

framework results in

RTIngy =

“RTVA[C]+By(T)[CI* + B3 (T)[CP +...)

11.72

where B,(T) and B;(T) are functions of temperature known as the osmotic virial coefficients.
Combining the two expressions, eliminating the molar volume, and rewriting the expression using
solute generic subscnpt i, C; the solute mass density (in units of grams/(volume of solution)), and
M, ; molecular weight, results in the form which is common in presenting data:

n_ G
RT M, ;
4000
®pH54
3000 1 |apas .
4 [}
o 2500
T 2000 -
E 1500 - R
1000 - e,
500 - o 4
0 -_ml ‘ T
0 200 400
g/L

Figare 11.16 (a) Osmotic pressure in mmHg for solutions of bovine serum albumin (BSA) in walter at 25°C
at different pH values. Data from Vilker, V.L.; Colton, C.K.; Smith, KA. J. Colloid Int. Sci.
1981. 79:348. (b} Fits of osmotic pressure al pH 5.4 as explained in Example 11.13.
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Example 11.13
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11.73
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Example 11.13 Osmotic pressure of BSA

Bovine serum albumin (BSA) has a molecular weight of 66399 g/imol. The osmotic pressure of
an aqueous solution at 25°C and pH 5.4 1s 74 mmHg when the concentration 1s 130 g/L and 260
mmHg at 234 g/L.* Using only these data, determine the second and third osmotic virial coeffi-
cients and estimate the pressure needed to concentrate a solution to 450 g/L. across a membrane
with pure water on the other side.

4000 1800
3500 4 [WPH74 D w600l [[© Deta [
®pH54 —— Linear Fit
3000 A ApHA45 - 1400| | — - Nondinear Fit
_ O Example 11.13
g 2500 . 1200
£ 2000 A E 1000
€ 1500 - L £ %0
& =
1000 - =" ¢ . 600
A
500 4 e ‘: 400
0 -_.-”l A T 200
0 200 400 600 0 . .
0 100 200 300 400 500
g/l BSAinglL
(@) (b)

Figure 11.16 (a) Osmotic pressure in mmHg jor solutions of bovine serum albwmin (BSA) in water at 25°C
at different pH values. Data from Vilker, V.L.; Colton, C.K.; Smith, K.A. J. Colloid Int. Sci.
1981. 79:348. (b} Fits of osmotic pressure al pH 5.4 as explained in Example 11.13.
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Example 11.13 Osmotic pressure of BSA (Continued)

Solution: Since two points are given, let us linearize the equation for osmotic pressure to relate
the coefficients to the slope and intercept. Defining a variable s to hold the rearranged variables,

I,
. . M, .
Converting the osmotic pressure to MPa, ( L — |)/ C;1is
RTC, !
(74mmHg 0.IMPa mol - K | 66399 gimol 1000cm? /L 1
3
o= 750mmHg 8.314MPacm? | 298.15K 130 gL — 7946x10° Lig

' 130g/L
Then at 234 g/L, 5,= l.269x10-2L-'g . The third coefficient is given by the slope of s, versus C,

Gi)yas ~Gidizg _ 1.269x107° - 7.946x107

-5
= 4.562x107 (Lig)?
(Ciyzs —(Ciag 734130

B3(T) =

The second coefficient is found using the third coefficient with either of the original data points.
From the point at 130 g/L:

Bo(T) = ;- By(T)C; = 7.946x107 — 4.562x107(130) = 2.015x10" Lig 11.75

Now at 450 g/L,

C.
T i -3 -5 5
— — ' . 2
o Mi(l 2015x107 C, + 4.562x107 C2)
- 6—2§29(1 £ 2.015%107°(450) + 4.562x107(450)2) = 0.07548mol/L

IT = (0.07548mol/L)(8.314 )(298.15)(L/1000cm3)( 750mmlg/0.1MPa) ~ 1403mmIig

Therefore, we must apply a minimum estimated pressure of 1400 mmHg to concentrate the BSA
to 450 g/L. The original paper cited gives a value of approximately 1500 mmHg. The estimate is
within 10%. The prediction is sensitive to noise in the data points selected. A better method is to
collect a few more data and regress a best fit.

Fig. 11.16(b) shows three fits of the data. For the “Linear Fit"”, the data are lincarized following
the procedure in this example, and then linear regression is used over all points. For the “"Non-
Linear Fit”, the error in the osmotic pressure prediction of Eqn. 11.73 is minimized using nonlin-
car regression. The “Example 11.13™ curve uses the coefficients fitted in this example. The
second osmotic coefficient for this data set is sensitive to the regression method. For the linear
fit [B, B,] =[1.93E-4 5.352E-5], for the nonlinear fit, [-3.57E-3 6.360E-5]. Careful analysis
of the regression statistics shows that the uncertainty in the value of B, is larger than the value—
the uncertainties for the 95% confidence limit of the nonlinear fit are =[5.25E-3 1.25E-5].
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drops is to make the solution isotonic, meaning that the osmotic pressure of water in the solution is
the same as that of the reference cellular matenal, the eyes in this case.”!

stituents can simply be added up until the isotonic concentration is achieved. A property that
follows this rule of adding up the constituents regardless of chemical nature is called a colligative
property, of which osmotic pressure is an example (as long as the concentration is sufficiently low
that B, and B, may be neglected).?? As a point of reference, human blood is in the concentration
range where colligative properties can be assumed and isotonic with any solution of (.308 mol/L
solute.

Example 11.14 Osmotic pressure and electroporation of E. coli

E. coli are bacteria commonly used to express desired proteins through genetic modification
because they replicate and express whatever intracellular DNA they find. Introducing foreign
DNA requires weakening the cell membrane by washing twice briefly (~10 min.) with pure
water at 4°C, followed by a wash with [0wt% glycerol solution, centrifuging to isolate the cell
pellet from the medium before washes. After the cells are rendered “clectro-competent” through
washing, all but | ml of the glycerol solution is removed and the aliquots are frozen for storage
until the “electroporation™ step (electrically shocking the cells) is conducted. What concentra-
tion of glycerol (wt%) is necessary to make a solution that is isotonic with human blood?
Describe what happens to the water in the cells and the glycerol outside the cells when the
medium is replaced with 10 wt% glycerol.

Solution: The molecular weight of glycerol can be found from the NIST Chemistry WebBook
as 92.1. This means that a 0.308 mol/L solution has 0.308-92.1 g/L of glycerol. Assuming
1000g/L as the density (the same as water since the concentration is low), this gives a weight
fraction of (0.308-92.1/1000 = 0.0284 = 2.84 wt%. Thercfore, the 10 wt% is hypertonic. The
activity of water is too low to be isotonic. The driving force is for water to come out of the cells,
diluting the glycerol outside the cells. The cells will shrink and shrivel.
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C.1. Modified Raoult’s Law Methods
The equation that must be solved is: y,P = xy,P %

Bubble P
1. Knowx;, T. Calc y,, P
l ¥ .
2.P = xn P+ xp1Py
3. y’= xl}ll P’ml - -\', K,
P
Bubble T

(Choose one flow sheet.)

Option (a)

1. Knowx, P
Guess 7'(e.g., Eqn. 10.22).

¥
2.Calcy, P™. I<—| 7. Guess T ]

v

3. Y= x;YIP lml =xK,

Lot |

Option (b)

1. Know x;, P. Guess 7'(e.g.. Eqn. 10.22).

6.1fy,>1, T}
G [T
Yes
8. Bubble 7"and
¥, found

'
sat
2. Pcalc - leylpl

i
Adjust 7 until P

cale

P

3. Bubble 7 found.
.vl= lel P IS(" = xlk’l
P
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Dew P

1. Knowy, T

Calc P Assume Raoult’s law for first
P, x; calculation

!
6.DewPand | No 2. x; changed? Yes for 5.x=y; PA Y, P™)
x, found first loop pass. =y/K,

Yes
3. Calc y, at new x, g P l
X
sat
L Vili
i
Optic () . Knowy, .
Dew T Assume Raoult’s law for first

T. x, calculation or Eqn. 10.22.

5. Dew T"and No 2. x, changed? Yes for 4. Xl=).'lP_': YK,
sels
xfound | first loop pass. 1P
Yes T
y.P i

sal

1P

(Choose one flow sheet.)

3. Adjust T until z

!
using y; at new x;

Option (b)

1. Know y,, P
Assume Raoult’s law for first
T, x, calculation or use Eqn. 10.22 and follow with

x,=y,P/P" and x, = Zx,: X, =x;/xp

¥
5.1fx,>1,T1%
7. Dew T'and | No~~ 2. x, changed? Yes for r=
proiorgl 2 e e ity < 1,74
Yes T
3. Calc y, at new x, 4y
. J o ; " o) Z-"i
x=yP =y/K, /
Ylptml X; = X,/XT




Isothermal Flash

I.Knowz, P T

Apply shortcut K-ratio method for first K, calculation.
Skip step 2 first time, set x,, y; to force outer loop below to execute at least once.

!

-PS‘"
2.Calcy, K; = Y'P' v
z(1-K
3.0B) = A L

!

1+ (V/F)(K,~ 1)

|

< 4. OBJ =0?

5. Make new guess
for V/F:

IfOBJ >0, V/F}
IfOBJ <0, V/F}

T

T
i

Yes

No

-
-

!

6. x,

i~ TR (7K, -1

=xK,

Inner loop can
sometimes be elimi-
nated by proceed-
ing from step 4 1o
step 6, using a gradi-
ent technique to esti-
mate new V/F.

Yes

7. Have x,y,, or
V/F changed?

8 x,v, and
No |V/F found
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